Proper Inner Product with Mean Displacement for Gaussian Noise Invariant ICA
نویسندگان
چکیده
Independent Component Analysis (ICA) is a classical method for Blind Source Separation (BSS). In this paper, we are interested in ICA in the presence of noise, i.e., the noisy ICA problem. Pseudo-Euclidean Gradient Iteration (PEGI) is a recent cumulant-based method that defines a pseudo Euclidean inner product to replace a quasi-whitening step in Gaussian noise invariant ICA. However, PEGI has two major limitations: 1) the pseudo Euclidean inner product is improper because it violates the positive definiteness of inner product; 2) the inner product matrix is orthogonal by design but it has gross errors or imperfections due to sample-based estimation. This paper proposes a new cumulant-based ICA method named as PIMD to address these two problems. We first define a Proper Inner product (PI) with proved positive definiteness and then relax the centering preprocessing step to a mean displacement (MD) step. Both PI and MD aim to improve the orthogonality of inner product matrix and the recovery of independent components (ICs) in sample-based estimation. We adopt a gradient iteration step to find the ICs for PIMD. Experiments on both synthetic and real data show the respective effectiveness of PI and MD as well as the superiority of PIMD over competing ICA methods. Moreover, MD can improve the performance of other ICA methods as well.
منابع مشابه
A Pseudo-Euclidean Iteration for Optimal Recovery in Noisy ICA
Independent Component Analysis (ICA) is a popular model for blind signal separation. The ICA model assumes that a number of independent source signals are linearly mixed to form the observed signals. We propose a new algorithm, PEGI (for pseudo-Euclidean Gradient Iteration), for provable model recovery for ICA with Gaussian noise. The main technical innovation of the algorithm is to use a fixed...
متن کاملFast Algorithms for Gaussian Noise Invariant Independent Component Analysis
The performance of standard algorithms for Independent Component Analysis quickly deteriorates under the addition of Gaussian noise. This is partially due to a common first step that typically consists of whitening, i.e., applying Principal Component Analysis (PCA) and rescaling the components to have identity covariance, which is not invariant under Gaussian noise. In our paper we develop the ...
متن کاملSpeech enhancement based on hidden Markov model using sparse code shrinkage
This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...
متن کاملUsing Invariant Translation to Denoise Electroencephalogram Signals
Problem statement: Because of the distance between the skull and the brain and their different resistivity’s, Electroencephalogram (EEG) recordings on a machine is usually mixed with the activities generated within the area called noise. EEG signals have been used to diagnose major brain diseases such as Epilepsy, narcolepsy and dementia. The presence of these noises however can result in misdi...
متن کاملModel Independent MRE Data Analysis
For the diagnosing modality called MRE (magnetic resonance elastography), the displacement vector of a wave propagating in a human tissue can be measured. The average of the local wavelength from this measured data could be an index for the diagnosing, because the local wave length becomes larger when the tissue is stiffer. By assuming that the local form of the wave is given approximately as m...
متن کامل